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ABSTRACT 

An automated, unsupervised Maximum a Posterior – 
Markov Random Field Expectation Maximisation (MAP-
MRF EM) Labelling technique, based upon a Bayesian 
framework, for volume of interest (VOI) determination in 
Positron Emission Tomography (PET) imagery is proposed. 
The segmentation technique incorporates MAP-MRF 
modelling into a mixture modelling approach using the EM 
algorithm, to consider both the structural and statistical 
nature of the data. The performance of the algorithm has 
been assessed on a set of PET phantom data. Investigations 
revealed improvements over a simple statistical approach 
using the EM algorithm, and improvements over a MAP-
MRF approach, using the output from the EM algorithm as 
an initial estimate. Improvement is also shown over a 
standard semi-automated thresholding method, and an 
automated Fuzzy Hidden Markov Chain (FHMC) approach; 
particularly for smaller object volume determination, as the 
FHMC method loses some spatial correlation. A deblurring 
pre-processing stage was also found to provide improved 
results. 
 

Index Terms— MAP-MRF, EM, PET, segmentation 
 

1. INTRODUCTION 
 

In this work we aim to evaluate the application of a MAP-
MRF EM labelling technique to lesion VOI determination 
in PET data. This is a subject of vital importance within the 
area of oncology applications such as therapy evaluation 
and treatment planning. The traditional approach is semi-
automated thresholding, which has been shown to return 
variable results [1]. Other methods such as clustering and 
watersheds have been shown to be sensitive to variations in 
noise intensity and lesion contrast; and also often involve 
user-dependent initializations [2]. A recent work has used a 
FHMC approach, due to its unsupervised nature and 
relatively short computation times [2]. Using this approach, 
a 3D image is transformed into a 1D chain using the 
Hilbert-Peano path. Encouraging results were found 
compared to previous methods. With smaller lesions, 

however, it was found that the spatial correlation of such 
small objects may be lost due to the transformation 
required. As no such transformation is required with the 
MAP-MRF EM technique; we hope to be able to overcome 
this.  

2. OBSERVATION MODEL 
 

We consider the observation Y to be a transformed and 
degraded version of the MRF realization X, given by  
 

                ( ) iY B X ε= +  (1) 

where B(X) is a blurring effect caused by the imaging 
system point spread function (PSF), and iε  is independent 

additive Gaussian noise.  
 

With this model, we need a pre-processing step to 
compensate for the blurring effect, before segmentation 
implements the de-noising. For this, we use the Lucy-
Richardson deconvolution method [3], which is based upon 
Bayesian principles. In practice, the PSF is difficult to 
measure and varies over the field of view. We assume it to 
be known and constant, so we can model the acquired 
(blurred) image as a convolution of the ideal image with the 
camera PSF. For PET images, it can be assumed that the 
PSF is well approximated by a Gaussian kernel, with a Full 
Width at Half Maximum (FWHM) of 6mm along the 3 axes 
for images [4]. 
 

For de-noising, a parameter estimation step is essential 
to our model. For this, we use a mixture modelling 
approach. We assume each dataset can be modeled by a 
mixture density of Gaussian distributions. The algorithm 
used in practice to find the mixture of distributions that best 
model the dataset is the EM algorithm, first introduced by 
Dempster et al. [5]. This is an iterative algorithm, which 
estimates the parameters via a Maximum Likelihood (ML) 
criterion. The mixture density returned can then be used to 
associate pixel observations with a Gaussian density in the 
mixture model, using a simple ML estimation. 
 

To provide a more robust segmentation, however, we 
integrate into the EM algorithm a MAP-MRF approach.  
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Using Bayes estimation, the posterior probability of a 
labelling estimate X given an observation Y can be 
computed by ( ) ( ) ( ) ( )| |P X Y P Y X P X P Y= , which for a 

fixed Y gives us a MAP estimate of 
 

     ( ) ( ){ }* arg max |
X

X P Y X P X=         (2) 

In MAP-MRF labeling, P(X|Y) is the posterior 
distribution of a MRF. The prior model P(X) takes into 
account spatial correlations present in an image, and is 
dependent upon the type of scene. Assuming our scene to be 
a piecewise constant surface, we consider an indicator 
function, I(Xi,Xj) = 1 if Xi = Xj and otherwise = 0. The Potts 
model can be described 

by ( ) ( )( ),
e x p ,

i j
P X I X i X jφ∝ , where the sum is 

computed over all neighbour pairs. Spatial homogeneity in 
the model is expressed using the parameterφ , small values 

implying randomness, and large values implying uniformity 
[6]. Let N(Xi) be the neighbourhood of Xi, and let U(N(Xi),k) 
be the number of neighbourhood voxels with a label 
corresponding to a distribution k. The prior energy for each 
distribution labelled k can then be defined as the negative of 
the sum of all the clique potentials over X [6] 

( ) ( )( , )i
i S

E X U N X kφ
∈

= −                                 (3) 

where S is the set of voxel sites, and i the site currently under 
consideration. 

The likelihood model P(Y|X) depends upon physical 
considerations. Y can be assumed to be a degraded version 
of a MRF realization X due to independent additive 
Gaussian noise. Taking a Gaussian distribution as a special 
form of a Gibbs distribution, advantage is then taken of a 
MRF’s equivalence to a Gibb’s distribution [6], to then 
define the likelihood 

as ( ) ( )( ) 2| exp | 2 i
i S

P Y X E Y X πσ
∈

= − ∏ , where 2
iσ is the 

variance of the estimated Gaussian distribution at voxel i, 
and 

( ) ( ) 2| 2i i i
i S

E Y X X Y σ
∈

= −                                 (4) 

is the likelihood energy.  

Finally, the prior and likelihood energies are added 
to yield the posterior energy. This gives  

( ) ( )2( | ) 2 ( , )i i i i
i S i S

E X Y X Y U N X kσ φ
∈ ∈

= − −     (5) 

The MAP estimate can then be found by minimising the 
posterior energy. Practically, this can be performed by the 
use of the Iterated Conditional Modes (ICM) algorithm, 
originally introduced by Besag [7]. This is an iterative 
algorithm that begins with the observed scene Y, and an 
initial estimate of the true scene X. By considering each  

.      
Fig. 1: (a) Graphical Representation of Phantom Object (b) Cross-
section of Central Slice obtained from Phantom  

 
voxel site in turn, it then proceeds to provide a new estimate 
of the true scene iteratively, until convergence is reached, or 
a maximum number of iterations complete. A single 
iteration of the ICM requires (6) for each voxel i, where k Gμ  

is the Gaussian mean of state k. 

( ) ( )* 2a r g m i n 2 ( , )k G i i
k

k Y U N X kμ σ φ= − −       (6) 

A label Xi is then given to voxel i in the updated 
estimate X, corresponding to k*.  With a traditional method 
an initial estimate is obtained from the EM Model. Here, 
however, we fully integrate the ICM algorithm into the EM 
algorithm, so that for each iteration we have a new estimate, 
and an optimal parameter estimation using a MAP, as 
opposed to a ML approach, for the following iteration. The 
optimal value of φ  for each iteration is chosen via Pseudo-

Likelihood Information Criterion (PLIC) analysis. This is 
an automated Bayesian technique that considers the ratio of 
likelihoods of output models to determine the optimal 
model. 
 

4. RESULTS AND ANALYSIS 
 

The phantom data obtained consists of an oval shaped object 
containing six fillable spheres of variable diameters filled 
with fluoro-deoxy-glucose (FDG). The volumes of the 
spheres range from 0.52 to 26.52 cm3. The imagery is 16-bit 
with dimension 128*128*35. Voxels are of size 4x4x4mm3, 
and the signal to background ratio in the imagery is 9:1 with 
an 18F-FDG concentration of 17.8kBq/ml in the spheres. A 
representation of the phantom object and data obtained is 
shown in Fig. 1. 
 

Each lesion/sphere in the 3D dataset was isolated in a 
box of similar size (16x16x16 voxels) prior to the 
implementation of the segmentation techniques. Using prior 
knowledge of the dataset, it was assumed that each 3D box 
contained 2 distributions (associated with the sphere of 
interest and background).  The traditional  semi-automated 
thresholding (thresholding with a value of 42% of the 
maximum intensity value in the lesion based on previous 
publications [8], referred to as T42) was initially performed, 
followed by ML EM segmentation, and a non-integrated 
MAP-MRF segmentation using the output from EM 
segmentation as an initial estimate. Results showing volume 
error compared to the true volume for these techniques are  
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Fig. 2: Volume of Interest errors for T42, EM Model and MAP-
MRF Models 

 
Figure 3: Line Plot of voxel intensity variation along line through 
the centre of each isolated box of dimension 16x16x16 (Volume 
of Sphere decreases as half-width of plot decreases) 
 

shown in Fig 2. 
 

Fig. 3 allows us to investigate how the voxel intensities 
vary for each sphere, and how this contrasts with the 
background pixel intensities. We can see that for the 2 
smallest spheres, the difference between the highest voxel 
intensity and voxel intensities of the background 
distribution is much less than for the larger spheres, causing 
over-estimation in these 2 cases, as the 42% threshold 
includes voxels that should be classified as background. In 
the case of the larger spheres, under-estimation occurs due 
to the larger highest voxel intensities. Here, the 42% 
threshold excludes voxels that should be classified as 
belonging to the VOI. 
 

Fig. 2 shows a trend, that as the true volumes of the 
spheres increase, accuracy in VOI determination increases, 
with a few exceptions, for all 3 techniques. As the sphere 
sizes increase, there is smaller overlap in the 2 distributions 
present in each case, as shown in Fig. 4. In the case of the 
EM segmentation, this leads to smaller over-estimation of 
the VOI, as the true volumes increase. This is illustrated in 
Figs 5(b) and 5(e). Over-estimation, however, still occurs 
with the larger voumes due to the partial volume effect 
(PVE) caused by the low resolution of the images.  

 
            (a)                             (b)  

Fig. 4: Gaussian distribution plots obtained via Mixture Modelling 
shown over the original histogram for spheres of true volume (a) 
0.52 (b) 1.15 (c) 26.52 [Log Scale on both x and y-axes] 
 

 
   (a)      (b)     (c) 

 
   (d)      (e)      (f) 
 

Fig. 5: Centre slice taken from Sphere of Volume = 0.52 (a) 
Original 16x16x16 Dataset (b) Centre slice from EM 
Segmentation (c) Output from MAP-MRF EM Segmentation. 
Centre slice taken from Sphere of Volume = 26.52 (d) Original 
16x16x16 Dataset (e) Centre slice from EM Segmentation (f) 
Output from MAP-MRF EM Segmentation 
 
This can be clearly seen, comparing Figs. 5(d) and 5(e). We 
see that the pixels on the periphery of the VOI in 5(d) 
(including elements of both the VOI and background due to 
PVE) are included in the EM segmentation shown in 5(e). 

 
The MAP-MRF technique provides improvement over 

the EM result for 4 of the spheres. The results, however, do 
not match those received using the T42 technique. For the 
larger spheres, little or no improvement is seen. For this, we 
can consider the fact that for a pixel situated near the edge 
of a sphere, after an initial classification there are naturally 
a higher number of neighbouring pixels classified as 
belonging to the sphere for larger spheres than smaller 
spheres. This can be illustrated by considering a pixel at the 
edge of the VOIs shown in Figs. 5(c) and 5(f). This has the 
effect of increasing the influence of the 2nd 
term ( )( , )iU N X kφ  in (6) for the component k relating to 

the VOI for larger spheres. It is natural; therefore, that the 
larger the VOI initially, the less likely it would be for the 
MRF modelling to decrease the volume. For smaller spheres 
the opposite effect is true, so although the initial  
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Fig. 6: Volume of Interest errors for MAP-MRF EM, MAP-MRF 
EM with deconvolution, and FHMC Models (Note: No Value is 
available for FHMC for Sphere of Volume 11.49) 

 
segmentation may not be as accurate for the smaller spheres, 
the MAP-MRF technique algorithm has a greater chance of 
recovering from this. The larger over-estimations returned 
for the smaller spheres with the EM technique, however, 
result in MAP-MRF results with large VOI errors. 
 

To overcome the issue of over-estimation with the EM 
technique due to PVE, we introduce the spatial 
dependencies between the voxels at an earlier stage in the 
segmentation process, by applying the MAP-MRF EM 
technique. The introduction of a deconvolution pre-
processing step is also applied. This de-blurring step takes 
into account B from (1), to provide a truer model of the real 
data, providing a clearer distinction between the 2 
distributions present. Finally, we compare to previous 
results obtained using the FHMC approach.  

 

Fig. 6 shows improvement for all the sphere VOIs 
returned with the MAP-MRF EM technique compared to 
the MAP-MRF technique. For all but 2 of the spheres, 
results returned also out-performed the T42 technique. We 
can see that the results of the MAP-MRF EM technique 
with the deconvolution pre-processing step provide the 
smallest volume errors in each case. Similar results were 
also found with this imagery for background ratios of 7.4:1 
and 5.8:1. We then compare results to those previously 
obtained using a FHMC approach with 5 of the spheres, 
using the same type of phantom data with a signal to 
background ratio of 8:1 and an 18F-FDG concentration of 
59.2kBq/mil in the spheres [2]. We can see that smaller 
volume errors are returned for the MAP-MRF EM 
technique with deconvolution for all but 1 sphere. In 
particular, we can see improved results for the smallest 
spheres, as no spatial correlation is lost with this method, 
unlike with the FHMC approach. 

 

                 5. CONCLUSION 
 

A MAP-MRF EM technique has been implemented to 

provide VOI determination in PET. Results are promising, 
showing improvement over previous standard approaches. 
Computational complexity issues compared to the FHMC 
technique were compensated for by the use of convolution 
operations on 3D datasets. This resulted in execution times 
of less than 0.2 secs for each ICM iteration (using a 
2800Mhz x86 GenuineIntel processor). The integrated 
approach applied also resulted in fast convergence. In 
general, for datasets of this size, the computational cost is 
not a major issue. We plan, however, to accelerate the 
algorithm further by offloading suitable parts to a Graphics 
Processing Unit, for parallel execution. Further work shall 
include the application of the technique to a greater range of 
datasets, including real PET imagery; and investigating the 
potential of updating the technique to take advantage of the 
Poisson distributed nature of raw PET data. 
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